شناسایی فیلوژنتیکی باکتری‌های اندوفیت جداشده از ریشه بادمجان و بررسی توان آنتاگونیستی آن‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

عضو باشگاه پژوهشگران جوان و نخبگان دانشگاه آزاد اسلامی واحد سنندج سنندج ایران

چکیده

باکتری‌های اندوفیت با توانائی تولید ترکیبات آنتاگونیست، قادر به کنترل بیمارگرهای گیاهی هستند. این مطالعه به منظور بررسی توانایی تولید ترکیبات آنتاگونیستی در باکتری‌های اندوفیت بادمجان انجام پذیرفته است. در این پژوهش باکتری‌های اندوفیت از ریشه بادمجان، جداسازی گردید، سویه‌ها از نظر تولید سیدروفور، هیدروژن سیانید و آنزیم پروتئاز مورد بررسی قرار گرفتند. 5 جدایه برای مطالعات ژنتیکی انتخاب شد. پس از استخراج DNA ژنومی، از روش PCR به منظور تکثیر ژن 16S rDNA استفاده گردید. به منظور شناسایی دقیق باکتری جداسازی شده، محصول PCR، تعیین توالی و ترادف بازی 16SrDNA BLAST گردید. تمام باکتری‌های جداسازی شده در این پژوهش قادر به تولید آنزیم پروتئاز بودند. تنها یک سویه‌ قادر به تولید هیدروژن سیانید بود. نتایج آزمون سیدروفور برای دو سویه‌ مثبت بود. نتایج تعیین توالی نشان داد که باکتری های جداسازی شده متعلق به باسیلوس اندوفیتیکوس است که با سویه تیپ شباهت 100 درصدی دارند و سویه‌های جداشده در این پژوهش، می‌توانند در افزایش رشد گیاه به‌کار روند. از آن‌جا که کشاورزی پایدار به توانائی حفظ تولید، همراه با استمرار نگه‌داشت منابع و حفظ محیط زیست تاکید دارد، لذا کاربرد باکتری‌های اندوفیت در راستای اهداف کشاورزی پایدار است و بی شک با شناخت و کشف مکانیزم‌های دخیل می‌توان به این مهم دست یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Phylogenetic characterization endophytic bacteria isolated from egg plant root with antagonistic ability

نویسندگان [English]

  • Faegheh Etminani
  • Adibeh Etminani

Member of Young and Elite Researchers Club of Sanandaj Branch of Sanandaj Branch of Iran

چکیده [English]

Abstract:
Endophytic bacteria are able to control plant pathogens by producing antagonistic compounds. This research was conducted to determine antagonistic ability of bacterial endophytes in egg plant (Solanum melongena L.). In this research endophytic bacteria were isolated from root of eggplant (Solanum melongena L.). Strains were surveyed for siderophore, Hydrogen cyanide and protease tests. 5 isolates were selected for genetic assay. After genomic DNA extraction, 16S rDNA gene was amplified using PCR for precisely bacterial identification. Then, the PCR product was sequenced by BLAST All isolated bacteria were able to produce protease. Only one strain (eg5) was able to produce cyanide hydrogen. The siderophore test was positive for two strains (eg2 and eg4). Based on the 16S rDNA sequence studies, this bacterium belonged to Bacillus endophyticus and indicated 100% similarity to type strain. The endophytic bacteria isolated in this study can be used to promote plant growth. Knowledge about endophytic bacteria- plant interaction can provide effective strategy to develop sustainable agriculture in order to ensure yield improvement without affecting environment.

کلیدواژه‌ها [English]

  • bacteria
  • eggplant
  • endophytic
  • siderophore

 Abo-Aba, S.E.M., Solinum, E.A.M., Nivien, A.A. (2006) Enhanced production of extra cellular alkaline protease in Bacillus circulance through plasmid transfer. Research Journal of Agriculture and Biological Sciences, 2: 526-530.

Alstrom, S., Burns, R.G. (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7: 232- 238.

Altschul, S.F., Gish, W., Miller, W., Mayers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 5: 215: 403-410.

Amaresan, N., Jayakumar, V., Thajuddin, N. (2012)  Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian Journal of Biotechnology, 13: 247-255.

Bagnasco, P., De la fuente, L., Gualtieri, G., Noya, F., Arias, A. (1998) Fluorescent Pseudomonas spp. As biocontrol agent against forage legume root pathogenic fungi. Soil Biology and Biochemistry, 30: 1317-1322.

Bakker, P.A.H.M., Ran, L.X., Pieterse, C.M.J., Van loon, L.C. (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant disease.Canadian Journal of Plant Pathology, 25: 5-9.

Bashan, Y. and Holguin, G. )1998( Proposal for the division of plant growth promoting rhizobacteria in to two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology Biocheimistry, 30: 1225-1228.

Hall, T.A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98 NT. Nucleic acid symposium series, 41: 95-98.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F.,  Kloepper, J.W. (1997) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43: 895-914.

Izumi, H. )2011( Diversity of Endophytic Bacteria in Forest Trees. Pp. 95-105. In: Pirttilä A.M. and Frank A.C (eds). Endophytes of Forest Trees. Springer Netherlands.

Jasim, B., Joseph, A.A., John, C.J., Mathew, J., Radhakrishnan, E.K. (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. Biotechnology, 4: 197-204.

Kimura, M. (1980) A simple method for estimating evolutionary rates of base subsituation through comparative studies of nucleotide sequence. Molecular Evolution, 16: 111-120.

Kobayashi, D.Y., Palumbo, J.D. (2000) Bacterial endophytes and their effects on plants and uses in agriculture. Pp. 199-233. In: Bacon CW and White JF (eds). Microbial endophytes. Marcel Dekker, New York.

Kumar, P., Dubey, R.C., Maheshwari, D.k. (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167: 493-499.

Lugtenberg, B., Kamilova, F. (2009) Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63: 541–556.

Luna, C.L., Mariano,. R.L.R., Souto-Maior, A.M. (2002) Production of a Biocontrol agent for Crucifers Black Rot Disease. Brazilian Journal of Chemical Engineering, 19: 133-140.

Mantelin, S., Touraine, B. (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Experimental Botany, 55: 27-34.

Maurhofer, M., Keel, C., Haas, D., Defago, G. (1995) Influence of plant species disease suppression by Pseudomona fluorescens strain CHAO with enhanced antibiotic production. Plant Pathology, 44: 40- 50.

Nagarajkumar, M., Bhaskaran, R., Velazhahan, R. (2004) Involvement of secondry metaboloties and extracellular lytic enzymes produced dy Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice, sheath blight pathogen. Microbiological Research, 159: 73-81.

Page, R.D.M. (1996) Tree view: an application to display phylogenetic trees on personal computers. Cabios Application Note, 12: 357-358.

Rasolisedghiyani, M., Rahimiyan, P., Khavari, K., Malakoti, M.H. (2005) Study of population density and identification of wheat phizospheric fluorescent pseudomonas in different region in Iran. Journal of Water and Soil Science, 19: 224-234.

Sambrook, J., Russell, D.W. (2001) Molecular Cloning, a Laboratory Manual.  Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1863P.

Schulz, B., Boyle, C (2006) What are endophytes? Pp 1–13 In Schulz B, Boyle C and Sieber T.N (eds). Microbial Root Endophytes Springer-Verlag, Berlin

Schywan, B., Neilands, J.B. (1987) Universal chemical assay for detection and determination of sidrophores. AnalyticalBiochemistry, 160: 47-56.

Stepniewska, Z., Kuzniar, A. (2013) Endophytic microorganisms- promising applications in bioremediation of greenhouse gases. Applied Microbiology and Biotechnology, 97: 9589-9596.

Strobel, G., Daisy, B. (2003) Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67: 491-502.

Swofford, D.L. (2002) Phylogenetic analysis using parsimony (and other methods). Sunderland, Massachsetts Sinauer Associates.

Szilagyi-Zecchin, V.J., Ikeda, A.C., Hungria, M., Adamoski, D., Kava-Cordeiro, V., Glienke, C., Galli-Terasawa, L.V.G. (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, 4: 2-9.

Thompson, J.D., Gibson, T.J. Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The clustal-x windows interface: flexible strategis for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 15: 4876-4882.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697- 703.

Yaish, M.W., Antony, I. and Glick, B.R. (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek, 107: 1519-1532.