بررسی راهکارهای افزایش تجزیه زیستی تری کلرواتیلن با جدایه ایرانSphingopyxis ummariensis باکتری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد مهندسی شیمی، پژوهشکده فناوری های شیمیایی، سازمان پژوهش های علمی و صنعتی ایران

2 استادیار زیست شناسی، پژوهشکده زیست فناوری، سازمان پژوهشهای علمی و صنعتی ایران

3 دانشیار مهندسی شیمی، پژوهشکده فناوری های شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران

چکیده

در تحقیق حاضر، برای تجزیه زیستی ماده آلاینده تری­کلرواتیلن (TCE) از باکتری محلی هوازی Sphingopyxis ummariensis جدایه ایران استفاده شد. این باکتری در حضور TCE به‌عنوان تنها منبع کربن رشد نموده و در غلظت اولیه mM 5 در زمان 48 ساعت 6/15% از این ترکیب را تجزیه نمود. برای افزایش بازده حذف TCE، چهار ماده گلوگز، تولوئن، گلوکز/عصاره­مخمر و فنل/نوترینت براث به عنوان منبع کربن هم­سوبسترا استفاده شد که بیشترین درصد حذف با استفاده از گلوکز/عصاره مخمر به میزان 3/16% به­دست آمد. همچنین، سازگار نمودن این سویه با TCE، موجب افزایش تجزیه زیستی شد به­گونه­ای که در غلظت اولیه mM 5 میزان تجزیه TCE به عنوان تنها منبع کربن از 6/15 تا 1/39% افزایش یافت. در این شرایط و در حضور هم­سوبسترای بهینه، تجزیه زیستی TCE تا 43% افزایش یافت. افزایش غلظت TCE از 5/0 تا mM 5، باعث کاهش توده سلولی و تجزیه زیستی شد. بیشترین تجزیه زیستی برای سویه­های سازگاریافته و در حضور گلوکز/عصاره مخمر و در غلظت mM TCE 5/0 به میزان 8/94% و با سرعت mg/l.h 6/1 به­دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of strategies to increase biodegradation of trichloroethylene by aerobic bacteria bacterial isolate Sphingopyxis ummariensis

نویسندگان [English]

  • Badali Varzaghani 1
  • Abbass Farazmand 2
  • Sohaila Shokrollahzadeh 3

1 MSc in Chemical Engineering, Research Institute of Chemical Technology, Iran Research and Technology Organization

2 Assistant Professor of Biology, Research Institute of Biotechnology, Iran Scientifc and Industrial Research Organization

3 Associate Professor of Chemical Engineering, Research Institute of Chemical Technology, Iran Scientifc and Industrial Research Organization

چکیده [English]

In the present study, an indigenous aerobic bacteria Sphingopyxis ummariensis (isolated
from Iran) was used for biological degradation of the Trichloroethylene (TCE). The bacteria
were grown in the presence of TCE as the sole carbon source and at an initial concentration
of 5 mM, which resulted in 15.6% degradation of TCE after 48 hours. To increase the efficiency
of TCE removal, glucose, toluene, glucose/yeast extract and phenol/nutrient broth
were used as a co-substrate carbon sources. The highest TCE removal (16.3%) was obtained
using glucose/yeast extract. Also, the biological removal of TCE, in initial concentration of
5 mM, was increased from 15.6 to 39.1% after adaptation of the bacteria to the TCE. In
this condition, and in the presence of glucose/yeast extract, biodegradation of TCE was increased
to 43%. The bacterial biomass and TCE biodegradability was reduced by increasing
the TCE concentration from 0.5 to 5.0 mM. The highest TCE removal (94.8%) was obtained
for adapted strains in the presence of glucose/yeast extract in the rate of 1.6 mg/l.h at initial
concentration of 0.5 mM.

کلیدواژه‌ها [English]

  • Aerobic biodegradation
  • Adaptation
  • Sphingopyxis ummariensis
  • Trichloroeth

 

 Aranda, C., Godoy, F., Becerra, J., Barra, R. and Martínez, M. (2003) Aerobic secondary utilization of a non-growth and inhibitory substrate 2, 4, 6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation. 14(4): 265-274.

 Aranda, C., Godoy, F., Becerra, J., Barra, R. and Martínez, M. (2003) Aerobic secondary utilization of a non-growth and inhibitory substrate 2, 4, 6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. iodegradation. 14(4): 265-274.

 Azadpour-Keeley, A., Russell, H. and Sewell,W. (1999) Ground Water Issue. In: Research Report, Environmental Protection Agency, Washington DC.Bagley, D.M., Lalonde, M., Kaseros, V., Stasiuk, K. E., and Sleep, B. E. (2000) Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Research. 34(1): 171-178.

           Chen, D.Z., Ouyang, D.J., Liu, H.X., Chen, J., Zhuang, Q.F. and Chen, J.M. (2014) Effective utilization of dichloromethane by a newly isolated strain Methylobacterium rhodesianum H13. Environmental Science and Pollution Research. 21(2): 1010-1019.

           Chen, Y.M., Lin, T.F., Huang, C. and Lin, J.C. (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere. 72(11): 1671-1680.

          DiSpirito, A.A., Gulledge, J., Shiemke, A.K., Murrell, J.C., Lidstrom, M.E. and Krema, C.L. (1991) Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation. 2(3): 151-164.

                  Ewers, J., Freier-Schröder, D. and Knackmuss, H.J. (1990) Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Archives of Microbiology. 154(4): 410-413.

           Fan, S. and Scow, K.M. (1993). Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Applied and Environmental Microbiology. 59(6): 1911-1918.

  Fathepure, B.Z. and Boyd, S.A. (1988) Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Applied and Environmental Microbiology. 54(12): 2976-2980.

        Fathepure, B.Z. and Boyd, S.A. (1988) Reductive dechlorination of perchloroethylene and the role of methanogens. Fems Microbiology Letters. 49(2): 149-156.

           Fennell, D.E., Underhill, S.E. and Jewell, W. J. (1992) Methanotrophic attached‐film reactor development and biofilm characteristics. Biotechnology and Bioengineering. 40(10): 1218-1232.

           Field, J. and Sierra-Alvarez R. (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology. 3(3): 185-254.

           Futagami, T., Goto, M. and Furukawa, K. (2008) Biochemical and genetic bases of dehalorespiration. The Chemical Record. 8(1): 1-12.

           Guo, G.L., Tseng, D.H., and Huang, S.L. (2001) Co-metabolic degradation of trichloroethylene by Pseudomonas putida in a fibrous bed bioreactor. Biotechnology Letters. 23(20): 1653-1657.

          Han, Y., Kuo, M.T., Tseng, I. and Lu, C. (2007) Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene. Journal of Hazardous Materials. 148(3): 583-591.

           He, J., Sung, Y., Krajmalnik‐Brown, R., Ritalahti, K. M. and Löffler, F. E. (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)‐and 1, 2‐dichloroethene‐respiring anaerobe. Environmental Microbiology. 7(9): 1442-1450.

           Keith, L. H. (1996) Compilation of EPA's sampling and analysis methods. 1696 PP, USA.   

Kocamemi, B.A. and Çeçen, F. (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials. 125(1): 260-265.

           Koh, S.C., Bowman, J.P. and Sayler, G.S. (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Applied and Environmental Microbiology. 59(4): 960-967.

           Li, Y., Li, B., Wang, C.P., Fan, J.Z. and Sun, H.W. (2014) Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates. International Journal of Molecular Sciences. 15(5): 9134-9148.

           Lohner, S.T., Becker, D., Mangold, K.M. and Tiehm, A. (2011) Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environmental Science & Technology. 45(15): 6491-6497.

           Mukherjee, P. and Roy, P. (2013) Persistent organic pollutants induced protein expression and immunocrossreactivity by Stenotrophomonas maltophilia PM102: a prospective bioremediating candidate. BioMed Research International. 2013- article ID 714232: 1-9.

           Ohlen, K., Chang, Y., Hegemann, W., Yin, C.R. and Lee, S.T. (2005) Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor. Chemosphere. 58(3): 373-377.

          Reij, M.W., Kieboom, J., de Bont, J. and Hartmans, S. (1995) Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Applied and Environmental Microbiology. 61(8): 2936-2942.

           Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T.K. (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology. 18(7): 775-778.

           Schroth, M.H., Oostrom, M., Wietsma, T.W. and Istok, J.D. (2001) In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology. 50(1): 79-98.

           Sedighi, M., Zamir, S. M. and Vahabzadeh, F. (2016) Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. Journal of Environmental Management. 165: 53-61.

           Shokrollahzadeh, S., Azizmohseni, F. and Golmohamad, F. (2015). Characterization and Kinetic Study of PAH–Degrading Sphingopyxis ummariensis Bacteria Isolated from a Petrochemical Wastewater Treatment Plant. Advances in Environmental Science and Technology. 1(1): 1-9.

           Shukla, A.K., Upadhyay, S.N. and Dubey, S.K.; (2014). Current trends in trichloroethylene biodegradation: a review. Critical Rviews in Biotechnology. 34(2): 101-114.

           Shukla, A.K., Vishwakarma, P., Singh, R., Upadhyay, S. and Dubey, S.K. (2010). Bio-filtration of trichloroethylene using diazotrophic bacterial community. Bioresource Technology. 101(7): 2126-2133.

           Shukla, A.K., Vishwakarma, P., Upadhyay, S., Tripathi, A.K., Prasana, H. and Dubey, S.K. (2009). Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresource Technology. 100(9): 2469-2474.

           Tiehm, A. and Schmidt, K.R. (2011). Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Current Opinion in Biotechnology. 22(3): 415-421.

           Tsien, H.C., Brusseau, G.A., Hanson, R.S. and Waclett, L. (1989). Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Applied and Environmental Microbiology. 55(12): 3155-3161.

         Zhang, X.S., Li, J.H., Kang, Y.J. and Dong, S.S. (2013). Isolation and Characterization of a Novel Pseudomonas sp. Strain Em-1 Capable of Degrading Trichloroethylene by Cometabolism under Aerobic Conditions. Environmental Science & Technology. 1: 1-15.

        Azadpour-Keeley, A., Russell, H. and Sewell,W. (1999). Ground Water Issue. In: Research Report, Environmental Protection Agency, Washington DC.Bagley, D.M., Lalonde, M., Kaseros, V., Stasiuk, K. E., and Sleep, B. E. (2000). Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Research. 34(1): 171-178.

           Chen, D.Z., Ouyang, D.J., Liu, H.X., Chen, J., Zhuang, Q.F. and Chen, J.M. (2014). Effective utilization of dichloromethane by a newly isolated strain Methylobacterium rhodesianum H13. Environmental Science and Pollution Research. 21(2): 1010-1019.

          Chen, Y.M., Lin, T.F., Huang, C. and Lin, J.C. (2008). Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere. 72(11): 1671-1680.

           DiSpirito, A.A., Gulledge, J., Shiemke, A.K., Murrell, J.C., Lidstrom, M.E. and Krema, C.L. (1991). Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation. 2(3): 151-164.

                Ewers, J., Freier-Schröder, D. and Knackmuss, H.J. (1990). Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Archives of Microbiology. 154(4): 410-413.

           Fan, S. and Scow, K.M. (1993). Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Applied and Environmental Microbiology. 59(6): 1911-1918.

           Fathepure, B.Z. and Boyd, S.A. (1988). Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Applied and Environmental Microbiology. 54(12): 2976-2980.

           Fathepure, B.Z. and Boyd, S.A. (1988-1). Reductive dechlorination of perchloroethylene and the role of methanogens. Fems Microbiology Letters. 49(2): 149-156.

           Fennell, D.E., Underhill, S.E. and Jewell, W. J. (1992). Methanotrophic attached‐film reactor development and biofilm characteristics. Biotechnology and Bioengineering. 40(10): 1218-1232.

         Field, J. and Sierra-Alvarez R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology. 3(3): 185-254.

           Futagami, T., Goto, M. and Furukawa, K. (2008). Biochemical and genetic bases of dehalorespiration. The Chemical Record. 8(1): 1-12.

          Guo, G.L., Tseng, D.H., and Huang, S.L. (2001). Co-metabolic degradation of trichloroethylene by Pseudomonas putida in a fibrous bed bioreactor. Biotechnology Letters. 23(20): 1653-1657.

           Han, Y., Kuo, M.T., Tseng, I. and Lu, C. (2007). Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene. Journal of Hazardous Materials. 148(3): 583-591.

          He, J., Sung, Y., Krajmalnik‐Brown, R., Ritalahti, K. M. and Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)‐and 1, 2‐dichloroethene‐respiring anaerobe. Environmental Microbiology. 7(9): 1442-1450.

           Keith, L. H. (1996). Compilation of EPA's sampling and analysis methods. 1696 PP, USA.  

Kocamemi, B.A. and Çeçen, F. (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials. 125(1): 260-265.

         Koh, S.C., Bowman, J.P. and Sayler, G.S. (1993). Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Applied and Environmental Microbiology. 59(4): 960-967.

           Li, Y., Li, B., Wang, C.P., Fan, J.Z. and Sun, H.W. (2014). Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates. International Journal of Molecular Sciences. 15(5): 9134-9148.

           Lohner, S.T., Becker, D., Mangold, K.M. and Tiehm, A. (2011). Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environmental Science & Technology. 45(15): 6491-6497.

           Mukherjee, P. and Roy, P. (2013). Persistent organic pollutants induced protein expression and immunocrossreactivity by Stenotrophomonas maltophilia PM102: a prospective bioremediating candidate. BioMed Research International. 2013- article ID 714232: 1-9.

           Ohlen, K., Chang, Y., Hegemann, W., Yin, C.R. and Lee, S.T. (2005). Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor. Chemosphere. 58(3): 373-377.

           Reij, M.W., Kieboom, J., de Bont, J. and Hartmans, S. (1995). Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Applied and Environmental Microbiology. 61(8): 2936-2942.

           Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T.K. (2000). Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology. 18(7): 775-778.

           Schroth, M.H., Oostrom, M., Wietsma, T.W. and Istok, J.D. (2001). In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology. 50(1): 79-98.

           Sedighi, M., Zamir, S. M. and Vahabzadeh, F. (2016). Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. Journal of Environmental Management. 165: 53-61.

         Shokrollahzadeh, S., Azizmohseni, F. and Golmohamad, F. (2015). Characterization and Kinetic Study of PAH–Degrading Sphingopyxis ummariensis Bacteria Isolated from a Petrochemical Wastewater Treatment Plant. Advances in Environmental Science and Technology. 1(1): 1-9.

         Shukla, A.K., Upadhyay, S.N. and Dubey, S.K.; (2014). Current trends in trichloroethylene biodegradation: a review. Critical Rviews in Biotechnology. 34(2): 101-114.

        Shukla, A.K., Vishwakarma, P., Singh, R., Upadhyay, S. and Dubey, S.K. (2010). Bio-filtration of trichloroethylene using diazotrophic bacterial community. Bioresource Technology. 101(7): 2126-2133.

          Shukla, A.K., Vishwakarma, P., Upadhyay, S., Tripathi, A.K., Prasana, H. and Dubey, S.K. (2009). Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresource Technology. 100(9): 2469-2474.

           Tiehm, A. and Schmidt, K.R. (2011). Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Current Opinion in Biotechnology. 22(3): 415-421.

           Tsien, H.C., Brusseau, G.A., Hanson, R.S. and Waclett, L. (1989). Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Applied and Environmental Microbiology. 55(12): 3155-3161.

          Zhang, X.S., Li, J.H., Kang, Y.J. and Dong, S.S. (2013). Isolation and Characterization of a Novel Pseudomonas sp. Strain Em-1 Capable of Degrading Trichloroethylene by Cometabolism under Aerobic Conditions. Environmental Science & Technology. 1: 1-15.