تولید لاکتیک اسید به روش تثبیت سلولی و تخمیر استخراجی در جا

فهیمه قره خانی 1، ناصر قانعی 2
سید عباس شجاع الساداتی 3

چکیده
در فرآیند تولید لاکتیک اسید به روش تخمیر، استخراج، تولید شده اثر مهارکننده بر سلول‌ها ریخته و از تولید بیشتر اسید جلوگیری می‌نماید. لذا با به کارگیری تکنیک‌های مختلف از جمله اضافه کردن کربنات کلسیم، سود و تخمیر استخراجی درجا سعی شده‌اند این اثر جلوگیری شود. ترکیب محیط کشت بر نیاز ماده میکروبی و جهت استفاده

(لاکتوپاسیوس دلبرکی) به مقادیر کم عصره‌ای مانند آهن و مگنز محصول دهنده. روان‌مان و با استفاده از سیستمی تثبیت سلولی و با تغییر دادن پارامتر های مانند

نسبت٢/۳، اندازه مهره و وزن خشک اولیه سلول سعی در محدود کردن دهنده انزیم‌های پایه.

حداکثر محصول دهنده (\(\text{g/L.h} \)) در نهایت می‌باشد. اندکی مهوه و وزن خشک اولیه سلول 74/۲۷ حاصل شده. مناسب‌سازی‌های مختلف از نظر پایداری ارژبایی شده که با توجه به ترکیب محیط کشت و نوع سوبه، ماتریس آگر نسبت به ماتریس مسیم الانتانات و الانتانیک اسید، پایداری بیشتری (۲۰ رو) نشان داد.

اثر حقیقی کندن‌های مختلف از نظر سپید کل و سبیت در سطح مولکولی بر روی سوپه بررسی شد و معلوم شد که ترکیباتی مانند روانگ زیتون، روانگ پارافین و کانول بهترین حقیقی کندن‌ها می‌باشند. اما هنگامی که فوک و درصد استخراج پایین را در استخراج لاکتیک اسید استفاده می‌شود و حقیقی کندن‌های پایین تر بیشتری به ارایه‌نامه استخراج بالاتری را

نشان می‌دهد. لذا با احراز آمیز نوع سوپ در حالی که فوک و درصد استخراج بالاتری به ۱۵/۰ درصد کانول

* . Productivity
tocid لاستیک اسید به روش تثبیت سلولی و تخمیر استخراجی در چا 29

استفاده شده، جون رقیق کننده فوق سمیت در سطح مولکولی نداشته و درصد استخراج
بی‌پایی را نیز دارا می‌باشد.

با یافتن دوربرد لاکتیک اسید با استیل کلریدریک و سود انجم شده که با استفاده از سود
می‌باشد.

واژه‌های کلیدی: تخمیر استخراجی، تولید لاکتیک اسید، تثبیت لاکتوسایلوس
دلبروکی، سیستم دو فاز مابین خلال آلبومین.

مقدمه

ایسید لاکتیک (8 - هیدرولوژیک)
پروپیونیک اسید یک هیدروکسی اسید آلی است و
مصرف زیادی در ارتباط با مواد غذایی،
فرمولاسیون داروسازی و صنایع شیمیایی دارد (1).

Yabannavar و همکارانش (1991) گزارش کرده‌اند که در فرآیند تولید اسید لاکتیک به وسیله
سلولهای تخشری اسید لاکتیک تولید شده بسته به
اینکه به شکل برون باشد یا به شکل غیر تفکیک
شده، اثر مهار کننگی متفاوت روز سوبه تولید
کننده اسید لاکتیک می‌گذارد و اسید لاکتیک غیر
تفکیک شده باعث مهار کننگی شدیدی
می‌شود. از طرف دیگر اسید تولید شده باعث
کاهش pH در کمتر از 4/3 مهار می‌شود (2). لذا سعی شد
با تفکیک‌های مختلف آزمایش‌های جمله اضافه یک چرخه
کریمات کننگی؛ اضافه کردن تدریجی سود
نرمال و تخمیر استخراجی درجا (3) از کاهش
و اثر مهار کننگی اسید تولید شده مانع می‌گردد.

کشت برای میکرو ارگانیسم مورد استفاده و با
استفاده از سیستم تثبیت سلولی و با تغییر دادن
پارامترهای مختلف در سیستم تثبیت سلولی محصول
دهی افزایش ییدا کند، در صورتی که محدودیت در
انتقال جرم سوسترا و اسید تولید شده می‌تواند و
محیط کشت جزئی باشد (3). سیستم تثبیت سلولی
دارای محاسن زیر می‌باشد:

1- تثبیت سلولی با Load یک دو فاز می‌باشد و
استفاده از سلول‌ها در شکل فعل نر باعث افزایش
محصول ده‌سی می‌باشد (4) (30).

2- در تثبیت سلولی با استفاده از بج تکرار شده
توانایی تولید اسید لاکتیک میکرو ارگانیسم برای
مدت زمان بیشتری حفظ می‌شود (3).

3- در تثبیت سلولی امکان آماده‌گذاری به
میکروارگانیسم‌های بیگانه کمتر است (3 و 16).

4- در تثبیت سلولی باذفیت محصول تولید شده
راحت می‌باشد (3).
زل م توائم تا حد زیادی کاهش دهیم (ق4ویط). اما بخش محلول در آب (سیمپت در سطح مولکولی) می تواند به ماتریکس نفوذ کرده و سلولها را بکشند (ق8ویط). لذا رقیق کننده ای که سیمپت در سطح مولکولی نشانده باشد و تأثیر کرده و با اضافه کردن آمین نوع سوم، درصد استخراج را بالا ببر و سپس در آب آمین نوع سوم کم بوده لذا سیمپت در سطح مولکولی آنها در علطف های باین جزئی می باشد (ق5ویط). لذا در این بررسی از مخلوط (ق9ویط) تری اکتین آمین و دکانول استفاده شد که در نهایت مولی (ق6ویط) = دارای درصد استخراج (ق8ویط) و ضریب توزیع (ق5ویط) بوده و سیمپت در سطح مولکولی آن جزئی می باشد (ق1ویط).

مواد و روش های اندازه گیری:
دستگاه ها و لوازم مورد نیاز:
1- اتوکلاو 2- فور الکتریکی 3- سانتیفیور 4- استاندارد pH استاندا و انکباونتر در دما 37 درجه سانتیگراد و حاوی CO2 6- اسکیترونومتر UV-1201 HEPHER SHIMATSU uv-vis مدل 1201 HEPHER SHIMATSU.

روش های اندازه گیری:
تیپ کشت مادر (تیپ محیط تغذیه):
به صورت آمال لوپیله به صورت آمال لوپیله شده خردیاری شد و توسط یک پت پاسور و در T.J.B شرایط استریل، 5/0 میلی لیتر از محیط کشت به آمود اضافه و قسمتی (Tomato.Juice.broth) تایتر قرار می دهند (ق5ویط).

5-تیپت سلولی با حذف سمت فازی حلال در سیستم تخمیر استخراجی، محیطی مطلوب برای سلولها فراهم می کند (ق5ویط). ماتریس که اعضا بیان تیپت سلول های کامل مورد استفاده قرار می گیرد زههای بیوتیوتیک مانند آنتی‌بادینگ، آگار، کاراگنات می باشد (ق3ویط). مکانیسم اتصال در ماتریس زه بیوتیوتیک بر گسترش پذیر است. بیان‌یابان پایداری شکل ماتریس به ترکیب بیونی محیط اطرافش وابسته می باشد (ق3ویط).

Yabanavar و همکارانش (ق9ویط) بیان داشتند که محصول دهی افزایش می یابد بدون آنکه بر کارایی استخراج تأثیر بگذارد با استفاده از مهره های کوچکتر قرار دادن جرم سلولی زیاد در مهره ها و گذارش مقدار زیادی زه فرمون (ق4ویط) در توزیع موفق یک پروتو تخمیر استخراجی، احتیاج به انتخاب دقیقی از حلال از جهت غیر سمی بودن و درصد استخراج بالا می باشد (ق2ویط) و (ق8ویط). Yabanavar و همکارانش از آمین های آلفا متیک باراد استفاده کرده اند.

برای استخراج اسید استفاده کرده اند. استفاده از آمین های آلفا متیک برای استخراج اسید به همان شناخته شده است (ق2ویط) و (ق1ویط).

رافائل بارو و همکارانش (ق8ویط) گزارش کردند که حالیت با قطیط بیان استخراج کننده بهتری نسبت به حلال با قطیط باين می باشد (ق8ویط). و بخش محلول در آب و غیر قابل اختلاف در آب حلالها فعالیت میکرووری را به طور متفاوت تحت تأثیر قرار می دهند (ق5ویط).

اثر بخش غیر قابل اختلاف در آب (سیمپت در سطح فازی) را با طرح تبیین کردن میکروارگانیسم در
تولید لاکتیکس اسید به روش ترشی سلولی و تخمیر استخراجی در چا/ 31

از این مخلوط به محیط کشت مايع و باقي امازيه به
محیط جامد منتقل شد. کشت ها در دماي 37 و
در آئکسیاتور حاوی 5% گاز کربن دی اکسید کریم به مدت 48 ساعت گرمایداری شده و بعد در یخچال در دماي
4 گرمایداری شده و از محیط فوق (محیط ماد)
اسلت، هاپی را با همان شرایط در محیط
تهیه کرده و آنها نيز در یخچال در
4 گرمایداری شده.

2) تهیه محیط کشت و پيش کشت:
دو نوع محیط کشت انتخاب شد و با بهينه کردن
محیط کشت یكي از محیط ها به عنوان بهترین
محیط کشت انتخاب گردید. که ترکیب محیط ها
در جدول (1) داده شده است. ترکیب محیط پيش
کشت و محیط کشت یکسان انتخاب شده و از تلقیح
(7/7/10) استفاده گردید و وارد به میهمان های
مورد استفاده محیط تخمیر در انکسیاتور حاوی
5% دی اکسی کریم و در دماي 37 گرمایی داده شد.

4) اندازه نهایی لاکتیک اسیدا استفاده از
مصرف پارالمدروکسی دی فیلن:
در این روش لاکتیک اسید به کمک اسید
سولفوریک غلظت و حرارت به استالهید تبدیل شده
و افزایش مصرف پارالمدروکسی دی فیلن به استالهید تشكیل یافته ابجاد رنگ ارغوانی
می کند.
و درصد استبدال لاکتیک به حسب میلی گرم طیق رابطه
زیر حساب می شود: (16)
تعیین اثر سرم کل رایح گندم به سیستم دو فازی براث حلال:
20 میلی لیتر از حلال که قبل با محیط کشت نماس داده شده است و 50 میلی لیتر محیط کشت حاوی میکروگانیسم اضافه شد و اثر سرم کل رقیق کندنه ها بر روی سویه از روز درصد مصرف ساکارز نسبت به حالت کنترل (بدون حلال) بررسی گردید.

تشییع سرمولکولی رقیق کندنه ها درسیستم براث اشنای از حلال:
24 میلی لیتر ازحلال به 50 میلی لیتر محیط کشت حاوی میکرو ارگانیسم های اضافه شد و اثر سرم مولکولی رقیق کندنه ها بر روی سویه از روز درصد مصرف ساکارز نسبت به حالت کنترل (بدون حلال) بررسی گردید.

نتایج و بحث
انتخاب سویه و محیط کشت:
L. delbrueckii PTCC1333 در این بررسی از سویه مصرف شده است. این سویه اکتونیابیوس، هموفرماتانیو اجبای بوده و لیپزیک اسید (4) تولید می کند و به علت هموفرامتانیو اجبای بودن و راندمان بالای محصول، سویه مناسبی در تولید سنتی لیپزیک اسید به شمار می رود. یکی از پارامترها در تعیین راندمان و محصول دهی، ترکیب محیط کشت می باشد لذا ما دو نوع محیط کشت را انتخاب کردند و با استفاده از مقدار لیپزیک اسید تولید شده و قند بایمانده راندمان و محصول دهی را محاسبه کرده و با درنظر گرفتن پارامترهای فوق قرارداده شد.
لذا ماتریس‌های مختلف از نظر پایداری ارزیابی شد. همان‌طور که در شکل (2) نشان داده شده است ماتریکس آگار 10 (روز) و ماتریکس آژن‌تاتس سدیم 4 (روز) و اسید آژن‌تاتس 3 (روز) پایداری نشان می‌دهد که به علت ترکیب محیط کشت و نوع سویه می‌باشد.

مهم‌تر از آژن‌تاتس‌های کلسیم در حضور بیونهای

و آژن‌تاتس اسید در حضور بیونهای

پایداری زیادی نشان می‌دهند. بنابراین در محیط مناسب تر از سه نوع ماتریس فوق، آگار مناسبتر تر تشخیص داده شد. در ضمن در طی تخمیر استخراج خارجی و درجا آگر چه مقداری از اسید توسط خلال استخراج می‌شود ولی برای اینکه درصد استخراج خوبی داشته باشیم بایستی

در حد ۳۰٪ نهگ داریم. جوان در اسیدی درصد استخراج بالا می‌رود، در صورتی که مهره‌های آژن‌تاتس کلسیم در pH ۵-۲ به آگار تر هستند و خلط زیاد اسید مثل درجه حرارت زیاد باعث دکریوکسیله شدن آژن‌تاتس‌ها می‌شود. مهره‌های آگار در محلول‌های فلایا قوی حل می‌شوند و در محیط اسیدی پایدارتر می‌باشند. لذا با سیستم

تخمیر استخراجی درجا ماتریس آگار مناسبتر تر می‌باشد.

بر اساس اینکه کردن محیط تخمیر و انتخاب محیط pH، فراوانی تخمیر با استفاده از سیستم نیت سلولی، دنبال شد.

و چون ماتریس‌های مختلف با توجه به شرایط محیط تخمیر و نوع سویه پایداری یکسانی نشان می‌دهند
جدول 1. تركيب محیط‌های کشت ستیزی بر حسب (p<0.05)

| محیط | گلوکز | ساکاروز | عصاره کازنی | پیتون سدیم | فسفات هیدروژن | فسفات پتاسیم | فسفات منیزیم | سوالات آنستیزی | سوالات منگنز | پک آب
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>100</td>
<td>100</td>
<td>20</td>
<td>8</td>
<td>0/2</td>
<td>0/2</td>
<td>0/3</td>
<td>0/03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

شکل 1. پایداری ماتریس‌های مختلف
جدول ۲. ترکیب محیط کشت با سویترای ساکاروز بر روی پارامترهای مختلف اندازه گیری شده

<table>
<thead>
<tr>
<th>productivity (gL⁻¹h⁻¹)</th>
<th>راندمان</th>
<th>اسید تولید شده (gL⁻¹)</th>
<th>مقدار وزن باقیمانده (gL⁻¹)</th>
<th>زمان (h)</th>
<th>نوع محیط</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/584</td>
<td>4/157</td>
<td>55</td>
<td>4/79</td>
<td>12</td>
<td>محیط 1</td>
</tr>
<tr>
<td>3/965</td>
<td>4/275</td>
<td>55</td>
<td>4/96</td>
<td>12</td>
<td>محیط 1</td>
</tr>
<tr>
<td>3/225</td>
<td>3/68</td>
<td>75</td>
<td>3/53</td>
<td>4</td>
<td>محیط 2</td>
</tr>
<tr>
<td>2/48</td>
<td>3/47</td>
<td>75</td>
<td>3/17</td>
<td>4</td>
<td>محیط 3</td>
</tr>
<tr>
<td>1/846</td>
<td>3/79</td>
<td>87</td>
<td>3/24</td>
<td>4</td>
<td>محیط 3</td>
</tr>
<tr>
<td>1/698</td>
<td>3/75</td>
<td>87</td>
<td>3/26</td>
<td>4</td>
<td>محیط 3</td>
</tr>
<tr>
<td>1/648</td>
<td>3/75</td>
<td>87</td>
<td>3/26</td>
<td>4</td>
<td>محیط 3</td>
</tr>
</tbody>
</table>

جدول ۳. تغییر پارامترهای مختلف بر روی لاکتیک اسید تولید شده و محصول دهی با سیستم تنبیت سلولی همراه با اضافه کردن سود N۲/5

<table>
<thead>
<tr>
<th>محیط ناز (gL⁻¹)</th>
<th>دانسیتی سلولی اولیه (gL⁻¹)</th>
<th>اندازه مهره</th>
<th>اسید لاکتیک تولید شده (gL⁻¹)</th>
<th>مقدار باقیمانده (gL⁻¹)</th>
<th>محصول دهی (gL⁻¹h⁻¹)</th>
<th>محصول دهی ویژه (gg⁻¹h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>12/235</td>
<td>3/83/1</td>
<td>80</td>
<td>15/789</td>
<td>3/2</td>
<td>0/773</td>
</tr>
<tr>
<td>1/5</td>
<td>12/235</td>
<td>3/83/1</td>
<td>92</td>
<td>3/4/7</td>
<td>2/84</td>
<td>0/21</td>
</tr>
<tr>
<td>1/5</td>
<td>12/235</td>
<td>3/83/1</td>
<td>85</td>
<td>10/65/2</td>
<td>3/4</td>
<td>0/145</td>
</tr>
<tr>
<td>1/5</td>
<td>12/235</td>
<td>3/83/1</td>
<td>90</td>
<td>3/6/5</td>
<td>2/5</td>
<td>0/204</td>
</tr>
<tr>
<td>1/5</td>
<td>12/235</td>
<td>3/83/1</td>
<td>90</td>
<td>5/3/2</td>
<td>3/75</td>
<td>0/3</td>
</tr>
</tbody>
</table>
جدول 4: درصد مصرف ساکارز به وسیله سلول‌های تثبیت‌نشده لیتوکاربسول دی‌ریژی در سیستم‌های دو فازی براثر - حلال

<table>
<thead>
<tr>
<th>گروه حلال</th>
<th>حلال</th>
<th>درصد مصرف ساکارز</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون حلال</td>
<td>كنترل</td>
<td>100</td>
</tr>
<tr>
<td>لیبيد</td>
<td>روغن زیتون</td>
<td>100</td>
</tr>
<tr>
<td>هیدروکرین</td>
<td>روغن پارافین</td>
<td>100</td>
</tr>
<tr>
<td>هیدروکرین</td>
<td>هژگان</td>
<td>30</td>
</tr>
<tr>
<td>هیدروکرین</td>
<td>دکاکن</td>
<td>100</td>
</tr>
<tr>
<td>استر</td>
<td>اتیل استات</td>
<td>0</td>
</tr>
<tr>
<td>هیدروکرین هالوزین</td>
<td>کلروفم</td>
<td>0</td>
</tr>
<tr>
<td>هیدروکرین هالوزین</td>
<td>دی کلروفنین</td>
<td>0</td>
</tr>
<tr>
<td>هیدروکرین هالوزین</td>
<td>او دی کلروفنین</td>
<td>0</td>
</tr>
<tr>
<td>آراماتیک</td>
<td>بنزن</td>
<td>0</td>
</tr>
<tr>
<td>آراماتیک</td>
<td>فول</td>
<td>0</td>
</tr>
<tr>
<td>کل</td>
<td>اکناوتل</td>
<td>0</td>
</tr>
<tr>
<td>کل</td>
<td>دکانول</td>
<td>0</td>
</tr>
</tbody>
</table>
جدول ۵. درصد مصرف ساکارز به وسیله سلول های تئیت نده لاکتوپلاسم دلبگی در دو سیستم مختل بعد از ۴۰ و ۲۵ ه و در دمای C ۳۷ (min)

<table>
<thead>
<tr>
<th></th>
<th>سیستم برای - حال</th>
<th>برای اتابکس از حال</th>
<th>حال</th>
<th>اکتانول</th>
<th>استات اتابکس</th>
<th>دی کلروفم</th>
<th>روغن زیتون</th>
<th>روغن پارافین</th>
<th>دکتانول</th>
</tr>
</thead>
<tbody>
<tr>
<td>اکتانول</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>استات اتابکس</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>دی کلروفم</td>
<td>۳</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>دی کلروفمن</td>
<td>۶</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>کلروفم</td>
<td>۴۱۵</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>روغن زیتون</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>روغن پارافین</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>دکتانول</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

نتایج جدول (۳): نشان می‌دهد که وقتی که نسبت اضرازی پیدا می‌گردد (البته در بیشتر از یک جنس بایستی نوع راکتور برای مناسب بیماری زیاد، راکتورهای بیستر برای مناسب تر از راکتورهای هم‌زمان دار می‌باشد) و با اندامی‌های مهره کاهش پیدا می‌کند (۶) و با دانش‌ی‌که اولیه سلولو اضرازی پیدا می‌گردد (البته نا یک ساده، جز بیشتر از یک جنس بایستی مهار کننده‌گی محصول تریس شده و باقی‌مانده در مارتیس روی سویه یا مهار کننده‌گی ايجاد می‌کند) مقدار اضرازی باید تولید شده و محصول دهی و محصول دهی و بی‌پردازش پیدا می‌گردد.

به‌بینه کردن پارامترهای مختلف در سیستم تئیت سلولی:

بعد از اینکه ماتریس آگار با توجه به ترکیب محیط کشت و نوع سویه مناسب تر تشخیص داده شده می‌گردد به تغییر پارامترهای مختلف مانند نسبت ترکیب‌دهی افزایش وزن خشک اولیه سلول محصول دهی بالاتری حاصل شود. این پارامتر در سیستم تئیت سلولی زمانی محصول دهی بالاتری حاصل می‌شود که همراه با بارگیری وزن خشک اولیه سلول بالا محدودیت در انتقال سوسترا و اسید تولید شده نیز حداقل شود.
در سطح مولکولی بررسی گردید که تناوب در جدول (5) نشان داده شده است و طبق تابع فوق، کانال حلال مناسب تشخیص داده شد. سپس در سطح مولکولی اصلی اندارد.

اثر حلال بر میزان استخراج

برای انتخاب حلال مناسب در تخمیر استخراج لازم بود به نهای اثر سیمت روی میکروگانیسم بررسی گردید. به دنبال انجام اعمام استخراج لاکتیک اسید، مطالعه می‌گردد. در سیستم تخمیر استخراج حلالی مناسب است که نه تنها غیر سمی باشد بلکه توانایی بالایی در استخراج ایده‌الزام داشته باشد. منافع رقیق کندن های غیر قطعی و هیدروکسی های با زنجبیل طول آگر چه غیر سمی می‌باشد اما توانایی استخراج ایده‌الزامی یا جمله لاکتیک است. این برای دانستن در صورتی که هر چه قطعیت رضایت کندن گرفتاری بی‌پایا می‌کند درصد استخراج افزایش می‌یابد. لذا با افزایش آمین نوع سوم قطعیت رضایت کندن یا افزایش دادیم (جدول 4). لذا به نمایش درصد آمین سیمیت در سطح مولکولی افزایش می‌یابد لذا با توجه به نتایج

جدول (7) علت غیر سمی بودن جزئی به میکروگانیسم های تنبیه شده (9) و به علت ضریب توسعی در صورت استخراج نسبتا بالا حلال مناسب در تخمیر استخراج تشخیص داده شد.

بررسی اثر سیمیت حلال‌های مختلف بر روی سوسیم مورد استفاده:

در اینجا تحقیقات در سیستم دو فازی براثر: حلال روی سلول های تنبیه نشده انجام شد. نتایج سیمیت کل (سیمیت در سطح فازی + سیمیت در سطح مولکولی) بررسی گردید و سپس تحقیقات در سیستم براثر اشباع از حلال روی سلول یک تنبیه نشده انجام شد. نتایج سیمیت در سطح مولکولی حلال بررسی گردید. سپس در سیستم‌های براثر - حلال که از میکروگانیسم های تنبیه شده استفاده شده باشد، نتایج سیمیت در سطح مولکولی خواهد بود سیمیت در سطح مولکولی بی‌خطار حلالیت در آب حلال تنشی می‌شود که می‌تواند در مانежی نفوذ کرده و اثر مهار کندن گی روی میکروگانیسم بکار گیرد.
جدول ۱۹ تغییر مقدار آمن بر روی ضرب توزیع و درصد استخراج

<table>
<thead>
<tr>
<th>آمن اسید</th>
<th>درصد استخراج</th>
<th>ضرب توزیع</th>
<th>مقدار آسیب لاکتیک mm³</th>
<th>دما (°C)</th>
<th>مقدار آمن</th>
<th>خلال ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/23</td>
<td>46/71</td>
<td>8/26</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>0/69</td>
<td>78/1</td>
<td>3/56</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>1/15</td>
<td>86/25</td>
<td>8/25</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>1/65</td>
<td>91/64</td>
<td>10/25</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>2/07</td>
<td>96/97</td>
<td>13/23</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>2/53</td>
<td>96/97</td>
<td>13/23</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
<tr>
<td>2/99</td>
<td>96/97</td>
<td>13/23</td>
<td>486</td>
<td>37</td>
<td>2/5 % (v/v)</td>
<td>دکانول + تری اکتیل آنیم</td>
</tr>
</tbody>
</table>
جدول 2. اثر نوع رقیق کننده بر روی ضریب توزیع و درصد استخراج

<table>
<thead>
<tr>
<th>درصد استخراج</th>
<th>ضریب توزیع</th>
<th>مقدار لاکتیک</th>
<th>دما (°C)</th>
<th>مقدار آمین</th>
<th>حلال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>78/1</td>
<td>3.56</td>
<td>37</td>
<td>15%(V/V)</td>
<td>دکتانول + تری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>82/75</td>
<td>4/8</td>
<td>37</td>
<td>15%(V/V)</td>
<td>اکتانول + تری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>79/57</td>
<td>3/897</td>
<td>37</td>
<td>15%(V/V)</td>
<td>استات</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>68/49</td>
<td>2/174</td>
<td>37</td>
<td>15%(V/V)</td>
<td>1-2 دی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>76/74</td>
<td>3/3</td>
<td>37</td>
<td>15%(V/V)</td>
<td>اکتانول + تری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>37/37</td>
<td>0/6</td>
<td>37</td>
<td>15%(V/V)</td>
<td>تری اکتانول</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>13/9</td>
<td>0/159</td>
<td>37</td>
<td>15%(V/V)</td>
<td>تری پارافین</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33% / 0.4 mm</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۸ نتایج اندازه‌گیری با سیستم تبیین سلولی و تخمیر استخراجی

<table>
<thead>
<tr>
<th>دانسیتء سلولی اولیه (g L⁻¹)</th>
<th>اندازه مهره</th>
<th>ضریب توزیع</th>
<th>اسید لاکتیک (g L⁻¹)</th>
<th>خسارت لاکتیک در حلال (g L⁻¹)</th>
<th>محصول دهی (g L⁻¹ h⁻¹)</th>
<th>محصول دهی به درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۴۳۵</td>
<td>۱/۵</td>
<td>۷۰</td>
<td>۱/۳</td>
<td>۳۵</td>
<td>۲/۹۱</td>
<td>۰/۲۳۱</td>
</tr>
<tr>
<td>۲۴/۴۷</td>
<td>۲/۵</td>
<td>۸۰</td>
<td>۱/۳۲</td>
<td>۴۷/۵۱۷</td>
<td>۳/۳</td>
<td>۰/۱۴۵</td>
</tr>
</tbody>
</table>

جدول ۹ مقایسه محصول دهی در سه سیستم مختلف

<table>
<thead>
<tr>
<th>محصول دهی بعد از ۲۴ ساعت (g L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سلولهای تبیین شده همراه با کریبتات کلپسیم</td>
</tr>
<tr>
<td>سلولهای تبیین شده همراه با اضافه کردن سود N۲/۵</td>
</tr>
<tr>
<td>سلولهای تبیین شده همراه با تخمیر استخراجی</td>
</tr>
</tbody>
</table>

جدول ۱۰ بازیافت لاکتیک اسید به وسیله اسید کلرید دریک

<table>
<thead>
<tr>
<th>لاکتیک اسید خارج (g L⁻¹)</th>
<th>اسید کلرید دریک: اسید خارج (g L⁻¹)</th>
<th>غلظت اولیه اسید (g L⁻¹)</th>
<th>لاکتیک اسید داخل شده (g L⁻¹)</th>
<th>درصد بایتافت</th>
<th>اسید کلرید دریک (g L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۱/۷</td>
<td>۱:۱</td>
<td>۴۵</td>
<td>۱۲۱/۲</td>
<td>۶۰</td>
<td>۳/۹۵</td>
</tr>
</tbody>
</table>
جدول 11. بازیافت لاکتیک اسید به وسیله سود

<table>
<thead>
<tr>
<th>لاکتیک اسید در حلال</th>
<th>سود در حلال</th>
<th>غلظت سود اولیه (gL⁻¹)</th>
<th>درصد بازیافت</th>
<th>مقدار سود باقیمانده (gL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاکتیک اسید در حلال</td>
<td>جدول 11</td>
<td>0.1</td>
<td>40</td>
<td>99/286</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17/206</td>
</tr>
</tbody>
</table>

- کاهش pH به کمتر از 4.5/4 به علت باقی ماندن مقدار لاکتیک اسیدزاید در برخی می باشد. در L. delbrueckii pH از 6.4 ماهر می شود. لذا این کاهش pH که اثر هماهنگی موجود در سیستم تثبیت سولوی و تخمیر استخراجی درجا 7.5ر با استفاده از این pH و با استفاده از سیستم تخمیر استخراج خارجی بر طرف کرده تا محصول دهی بالاتری حاصل شود.

با بازیافت دوباره اسید لاکتیک
برای بازیافت دوباره لاکتیک اسیدزاید حلال دو روش موجود است:
الف- با استفاده از محلول هیدرو کسید سدیم به علت بازیافت دوباره لاکتیک اسیدزاید به شکل لاکتات سدیم.
ب- با استفاده از اسید کلریدریک، يعني اسید کلریدریک جانشین لاکتیک اسیدزاید فاز آبی می گردید. همانطور که از جدول (11) پیداست در روش اول با نسبت سود : حلال (1:1) و با غلظت اولیه سود 100/0.1% (1/286) لاکتیک اسیدزاید به شکل لاکتات سدیم بازیابی می شود اما در روش دوم با مقدار اسید کلریدریک اولیه 4 g L⁻¹.

سیستم تثبیت سولوی و تخمیر استخراجی:
همانطور که از جدول (8) پیداست در سیستم تثبیت سولوی و تخمیر استخراجی نبیز در دو حالت با اندیشده به کمکان، در حالی که جریم سولوی بیشتری بارگیری شود گال بالاتری حاصل می گردد (1/23 در مقامه به (2/71) اگر چه محصول دهی ویژه کاهش را نشان می دهد.

کاهش محصول دهی ویژه یانگر این مطلب است که افزایش مقدار اسید تولید شده به طور خطری با افزایش بارگیری جرم سولوی بالا نمی رود زیرا در انتقال اسید تولید شده از مارترس به محیط محدودیت ایجاد می شود.

مقایسه محصول دهی در سه
سیستم مختلف:
همانطور که از جدول (9) پیداست (محصول دهی) در سیستم تثبیت سولوی و تخمیر استخراجی با پایین تر از سیستم تثبیت سولوی همرار با اضافه کردن سود می باشد که احتمالاً:
- ۱. نانی از سیستم نتیجه آکسی آمین در سطح
مولکولی قبلاً تر (7/15) ترا آکسی آمین + دکانول می باشد.

باژایافت (احیاء) خلال بعد از استخراج
وقتی لاکتیک اسیدحلال با محلول هیدروکسید سدیم به شکل لاکتان سدیم بازیافت می شود لاکتک اسیدحلال در فاز آبی وارد می شود حداکثر تقریبا به 0/100 بازیافت محصول می سرم خلال به صورت خالص آجیا می شود اما وقتی که لاکتیک اسیدحلال با استفاده از اسید کلریدریک بازیافت می شود خالصیت می 0/100 بازیافت حاصل نمی شود بلکه 0/64 بازیافت حاصل می شود که لاکتیک اسیدریک فاز آبی (حلال) باقی میماند و مقداری اسید کلریدریک نیز در حلال باقی می ماند اسید کلریدریک باقیمانده را از طریق تقطیع می توان خارج کرد، اما برای بدست آوردن حلال خالص بایستی عمل استخراج لاکتیک اسید باقیمانده دوا دوباره با محلول سدیم (هیدروکسید سدیم) انجام داد.

منابع
1. قره خانی، فهمه، تولید اسید لاکتیک به روش تثبیت سلولی و تخمر استخراجی درجا، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، 1376.