آسیب شناسی اثرات سطوح مختلف نانوذره مس در آب بر آبشش بچه ماهی قزل-آلای رنگین کمان (Oncorhynchus mykiss) پیش و پس از یک دوره بازیابی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار،گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه

2 کارشناسی ارشد/دانشگاه ارومیه

چکیده

مطالعه حاضر به منظور بررسی آسیب‌های نانو ذره مس بر ساختار بافت آبشش بچه ماهی قزل‌آلای رنگین‌کمان در پیش و پس از یک دوره بازیابی طرح ریزی شد. برای این منظور مجموعا 135 قطعه بچه ماهی با وزن متوسط 30 گرم به صورت تصادفی در مخازن90 لیتری توزیع گردیدند. بچه ماهیان به مدت 21 روز تحت سه تیمار مختلف نانو ذره شامل 0، 25 و 50 میکروگرم در لیتر نانوذره مس قرار گرفتند و همچنین با هدف بررسی امکان ترمیم آسیب‌ها پس از حذف نانو ذره، ماهیان به مدت 21 روز دیگر پرورش یافتند. نمونه‌برداری از بافت آبشش در انتهای دو دوره انجام و با روش هماتوکسیلن-ائوزین رنگ آمیزی شدند. نتایج مرحله اول بافت شناسی آبشش نشان داد که هر دو غلظت 25 و 50 میکروگرم در لیتر نانو ذره مس باعث ایجاد آسیب‌هایی همچون کاهش طول رشته‌های آبششی و هایپرپلازی اپتلیال گردید. همچنین تلانژکتازی و تجمع خون در تیمار 25 میکروگرم در لیتر قابل مشاهده بود. تجمع خون شدید در قسمت ابتدایی رشته های آبششی، افزایش فضای بین تیغه‌های آبششی و تخریب اپیتلیال در برخی نقاط تیغه‌های ثانویه آبششی در تیمار 50 میکروگرم در لیتر مشاهده شد. در مرحله دوم مطالعه نیز آسیب‌های بافتی البته با شدت کمتری وجود داشت. جمع بندی نتایج نشان می دهد نانو ذره سبب آسیب به بافت آبشش بچه ماهیان می گردد بنحوی که در غلظت های بالا، شدت این آسیب ها افزایش می یابد، و همچنین برخی از این آسیب‌ها حتی پس از اتمام مرحله مواجهه نیز در بافت هدف قابل مشاهده است.

کلیدواژه‌ها

عنوان مقاله [English]

Histopathological effects of waterborne copper nanoparticles on the gills of rainbow trout (Oncorhynchus mykiss) fingerlings before and after a recovery period

نویسندگان [English]

  • Ahmad Imani 1
  • Kourosh Sarvi 1
  • Sairan Khani 2

1 Assistant Professor, Department of Fisheries, Faculty of Natural Resources, Urmia University

2 Master / Urmia University

چکیده [English]

Present study was to elucidate the histological damage of copper nanoparticles on gills of rainbow trout before and after a recovery period. To that end, total 135 fingerlings with an average body weight of 30 g were randomly allocated into nine polyethylene tanks (with 90 l volume). Fingerlings were exposed to three concentrations of copper nanoparticles, namely, 0, 25 and 50 ppb for 21 days. The recovery period was also lasted for another 21 days post nanoparticle exposure with no longer nanoparticle addition to culture media to assess the capacity of fish to recover the gill histoarchitecture. The gill samples were taken at the end of each period and stained with H&E method. Results from the first stage indicated that 25 and 50 25 μg/l Cu-NPs resulted in filament shrinkage and epithelial hyperplasia. Also, telangiectasis and blood congestion on tips of gill filaments of 25 μg/l Cu-NPs exposed group were observed. Severe blood congestion and increased inter-lamellar space along with moderate local epithelial degeneration of secondary lamellas were noticeable in 50 μg/l Cu-NPs exposed fish. Tissue damage was observable even after a 21-day recovery period. However, the severity of pathological alterations was lower. In conclusion, it is conceivable that copper nanoparticles can cause noticeable damage to gills which in some cases could be noticed even after post exposure recovery period.

کلیدواژه‌ها [English]

  • Copper Nanoparticles
  • Gill
  • Rainbow Trout
  • Fingerlings

باقـرزاده لاکانـی، ف،. مشـکینی، س،. حـب نقـی، ر. مولایـی، ر،.(1393)آسـیب شناسـی اثـرات سـطوح

مختلــف نانــوذره مــس بــر بافــت آبشــش بچــه ماهــی قــزل آلای رنگیــن کمــان .(-Oncorhyn

chus mykiss)دومیـن کنفرانـس ملـی ماهـی شناسـی ایـران، تهـران.-226 225

پوسـتی، ا،. (1368)بافـت شناسـی مقایسـه ایـی و هیسـتوتکنیک. چـاپ اول. انتشـارات دانشـگاه تهـران.

519صفحـه.

خبــازی، م،. هرســیج، م،. هدایتــی، ع. ا،. گرامــی، م. ح،. غفــاری فارســانی، ح،. (1394)تأثیــر غلظتهــای

تحــت کشــندهی فلــز مــس (CuSO4)در پارامترهــای هماتولوژیــک خــون قــزل آلای رنگیــن

کمــان (Oncorhynchus mykiss)مجلــه بــوم شناســی آبزیــان .4 (4) : 1-7.

ستاری، م،. (1391)بهداشت و بیماری های آبزیان. انتشارات حق شناس، 736صفحه.

صبوری، ع.ا،. عطری، م،. (1390ا)کسیژن و تکامل حیات. انتشارات دانشگاه تهران، 244صفحه.

مشـتاقی، ع.ا،. (1391)مـروری بـر تحقیقـات انجـام شـده در ارتبـاط بـا اهمیـت روی در سیسـتم هـای

بیولوژیکـی. دو ماهنامـه علمی-پژوهشـی فیـض .7 (16): 733-734.

Agarwal, M., Murugan, M.S., Sharma, A., Rai, R., Kamboj, A., Sharma, H. and Roy, S.K., (2013)

Nanoparticles and its toxic effects: A review. International Journal of Current Microbiology and Applied Sciences 2(10): 76-82.

Arellano, J.M., Sarasquete, C. and Storch, V., (1999) Histological Changes and Copper Accumulation in Liver and Gills of the Senegales Sole, )Solea senegalensis). Ecotoxicology

and Environmental Safety 44(3): 62-72.

Al-Bairuty, G.A., Shaw, B.J., Handy, R.D. and Henry, T.B., (2013) Histopathological effects of

waterborne copper nanoparticles and copper sulphate on the organs of rainbow

trout (Oncorhynchus mykiss). Aquatic Toxicology 126(20): 104–115.

Chan, W.C.W., (2006) Biotechnology progress and advances. Biology of Blood and Marrow

Transplantation 12(5): 87-91.

Chen, X. and Schluesener, H.J., (2008) A nanoproduct in medical application. Microchimica

Acta 176(1): 1-12.

Elsaesser, A. and Howard, C. V. (2012) Toxicology of nanoparticles. Advanced Drug Delivery Reviews 64(2):129-137.

 

Ferraris, R.P., Tan, J.D. and Delacruz, M.C., (1987) Development of the digestive tract of Milk-fish, (Chanos chanos). Aquaculture 61(5): 241-257.

 

Figueiredo-Fernandes, A., Fernandes, A., Carrola, J., Ferreira-Cardoso, J.V., Fontaínhas- Fer-nandes, A., Garcia-Santos, S., Matos, P. and Monteiro, S.M., (2007)Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesticide Biochemistry and Physiology 27(3): 103-109.

 

Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D. and Barber, D. S. (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in ze-brafish (Danio rerio). Environmental Science & Technology 41(23), 8178-8186.

 

Grosell, M.H., Hogstrand, C.M. and Wood, C.M., (1998) Renal Cu and Na excretion and he-patic Cu metabolism in both Cu acclimated and non acclimated rainbow trout (On-corhynchus mykiss). Aquatic Toxicology 40(1): 275-291.

 

Grosell, M., Blanchard, J., Brix, K.V. and Gerdes, R., (2007) Physiology is pivotal for interac-tions between salinity and acute copper toxicity to fish and invertebrates. Aquatic Toxicology 84(3): 162–172.

 

Handy, R.D., (2003) Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comparative Biochemistry and Physiology - Part A: Molecular Marine Biology and Biotechnology 135(4): 25–38.

 

Heerden, D.V., Andre Vosloo, A. and Nikinmaa, M., (2004) Effects of short-term copper ex-posure on gill structure, metallothionein and hypoxia-inducible factor-1α (HIF-1α) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 69(3): 271-280.

 

Kagan, V.E., Bayir, H. and Shvedova, A.A., (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine: Nanotechnology, Biology, and Medicine 1(1): 313.

 

Luoma, S.N. and Rainbow, P.S., (2008) Sources and cycles of trace metals. In: Metal Contam-ination in Aquatic Environments. Science and Lateral Management 573P.

 

Mazon, A.F., Cerqueira, C.C.C. and Fernandes, M.N., (2002) Gill cellular changes induced by copper exposure in the South American tropical freshwater fish (Prochilodus scrofa). Environmental ResearchSection J with Mailing Instructions 88(3): 52-63.

 

Nakamura, S., Li, H., Adijiang, A., Pischetsrieder, and Niwa, T., (2007) Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrology Dialysis Transplantation 22: 2165-2174.

 

Perello, M., (2013) Effects of direct and dietary exposure to silver nanoparticles on a tr-itrophic system. Proceedings of the National Conference on Undergraduate Research

(NCUR), University of Wisconsin La Crosse 117-124.

 

 

Rajkumar, K. S., Kanipandian, N. and Thirumurugan, R., (2016) Toxicity assessment on hae-motology, biochemical and histopathological alterations of silver nanoparticles-ex-posed freshwater fish Labeo rohita. Applied Nanoscience 6(1): 19-29.

 

Roberts, R.J., (2001) Fish Pathology. London, Saunders 472p.

 

Roque d’orbcastel, E., Blancheton, J. P. and Belaud, A. (2009) Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural Engineering 40(3): 135-143.

 

Schreck, C.B. and Moyle, P.B., (1990) Methods for Fish Biology. Maryland: American Fisheries Society 491-525.

 

Shaw, B.J. and Handy, R.D., (2006) Dietary copper exposure and recovery in Nile tilapia, (Oreochromis niloticus). Aquatic Toxicology 76(6): 111–121.

 

Shaw, B.J. and Handy, R.D., (2011) Physiological effects of nanoparticles on fish: a compar-

 

ison of nanometals versus metal ions. Environment International 37(2): 1083–1097.

 

Shaw, B.J., Al-Bairuty, G. and Handy, R. D., (2012) Effects waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): Physiology and accu-mulation. Aquatic Toxicology 116: 90– 101.

 

Song, L., Vijver, M. G., Peijnenburg, W. J., Galloway, T. S. and Tyler, C. R., (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139, 181-189.

 

Tee, J. K., Ong, C. N., Bay, B. H., Ho, H. K. and Leong, D. T., (2015) Oxidative stress by inorganic nanoparticles. WIREs Nanomed Nanobiotechnol. doi: 10.1002/wnan.1374.

 

Velmurugan, B., Selvanayagama, M., Cengiz, E.I. and Unlu, E., (2007) Histopathology of lambdacyhalothrin on tissues(gill, kidney, liver and intestine) of (Cirrhinus mrigala). Environmental Toxicology and Pharmacology 24(3): 286–291.

 

Viarengo, A., (1989) Heavy metals in marine invertebrates: Mechanisms of regulation and

 

toxicity at the cellular level. Aquaculture Science 40(1): 295-317.

 

Xiong, J., Wang, Y., Xue, Q. and Wu, X., (2011) Synthesis of highly stable dispersions of na-no-sized copper particles using L-ascorbic acid. Green Chemistry 13(4): 900–904.

 

Yah, C. S., Iyuke, S. E. and Simate, G. S., (2011) A Review of Nanoparticles Toxicity and Their Routes of Exposures. Iranian Journal of Pharmaceutical Sciences 8(1): 299-314.

 

Zhou, C., Vitiello, V., Casals, E., Puntes, V.F., Iamunno, F., Pellegrini, D., Changwen, W., Ben-venuto, G. and Buttino, I., (2016) Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles. Aquatic Toxicology 1701-12.