پاسخ های فیزیولوژیکی دانه رست های کنجد به پلی اتیلن گلیکول 6000

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار، دانشگاه تربیت دبیر شهید رجائی، دانشکده علوم پایه،گروه محیط زیست، تهران ، ایران

چکیده

تحمل به تنش آبی تقریباً در تمام گونه ها یا ارقام گیاهی مشاهده می شود، ولی میزان این تحمل از گونه به گونه یا رقم به رقم متفاوت است. کنجد (Sesamum indicum L.) یک گیاه زراعی روغنی مهم است. هدف این پژوهش بررسی اثرات اکسیداتیو و پاسخ های آنتی اکسیدانی در دو رقم کنجد (Sesamum indicum L.) داراب 14 و یکتا تحت تاثیر سطوح مختلف پلی اتیلن گلیکول 6000 بوده است. تیمارهای پلی اتیلن گلیکول شامل پتانسیل های اسمزی معادل 0، 3/0-، 6/0- و 9/0- مگاپاسکال بود. نتایج نشان داد که با افزایش پتانسیل اسمزی، جوانه زنی بذر، طول دانه رست ها، وزن تر و خشک، محتوای نسبی آب، و پروتئین کاهش، ولی محتوای هیدروژن پراکسید، مالون دی آلدهید و پرولین افزایش می یابد. همچنین فعالیت آنزیم های آنتی اکسیدان شامل سوپراکسیددیسموتاز، پراکسیداز، کاتالاز و آسکوربات پراکسیداز دانه رست های هر دو رقم با افزایش کمبود آب افزایش یافت. بر اساس این پژوهش، دانه رست های رقم یکتا از رقم داراب 14 نسبت به کمبود آب بردبارتر می باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Physiological responses of sesame seedlings to polyethyleneglycol 6000

نویسنده [English]

  • Faezeh Fazeli

Associate Professor, Department of Environment, Faculty of Sciences, Shahid Rajaee Teacher Training University,Tehran,Iran

چکیده [English]

Water stress tolerance is seen in almost all plant species or cultivars but its extent varies from species to species or cultivars to cultivars. Sesame (Sesamum indicum L.) is an important oilseed crop. The aim of the present investigation was to study the oxidative effects and antioxidant responses in two sesame cultivars (cvs Darab 14 and Yekta) subjected to different levels of poltethylene glycol (PEG 6000). PEG treatments included osmotic potential equal to 0, -0.3, -0.6 and -0.9 MPa and resulted in decrease of seeds germination, seedlings length, fresh and dry masses, relative water content, protein content but increase in contents of hydrogen peroxide, malondialdehyde, proline with increasing of osmotic potential. The activities of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase and ascorbate peroxidase of sesame seedlings changed with the increase of water deficit. According to present study seedlings of cv. Yekta is more tolerant to water deficit than cv. Darab 14.

کلیدواژه‌ها [English]

  • antioxidant enzymes
  • Hydrogen peroxide
  • Malondialdehyde
  • Polyethylene glycol 6000
  • Sesame

آئین، ا. (1392). اثر حذف آبیاری در مراحل مختلف رشد بر عملکرد دانه و برخی صفات زراعی دو ژنوتیپ کنجد. مجله به زراعی نهال و بذر 29: 79-67.

شکوه فر، ع.ر.، یعقوبی نژاد، س. (1391). اثر تنش خشکی بر اجزاء عملکرد ارقام مختلف کنجد. مجله زراعت و اصلاح نبات4: 29-19.

گلستانی، م.، پاک نیت، ح. (1386). ارزیابی شاخص های تحمل به خشکی در لاین های کنجد. مجله علوم و فنون کشاورزی و منابع طییعی 41: 149-141.

Abeles, F.B. and Biles, C.L. (1991). Characterization of peroxidase in lignifying peach fruit endocarp. Plant Physiology 95: 269-273.

Aebi, H. (1974). Catalases. In: Methods of Enzymatic Analysis. (ed. Bergmeyer, H.U.) Vol. 2. Academic Press, New York.

Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639.

Bajji, M., Lutts, S. and Kinet, J. M. ( 2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions.Plant Science 160: 669-681.

Bandurska, H. (2000). Dose proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? Ι. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta physiologia Plantarum 4: 409-415.

Bates, L. S., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies.  Plant Soil 39: 205-207.

Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Annals Biochemistry 44: 276-278.

Boldaji, S.A.H., Khavari-Nejad, R.A., Sajedi, R.H., Fahimi, H., Saadatmand, S. (2012). Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa L.). Acta Physiologia Plantarum 34: 1177-1186.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram  quantities of protein utilizing the principle of protein-dye binding. Annals Biochemistry 72: 255-260.

Cabuslay, G. S., Ito, O. and Alejar, A. A. (2002). Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science 163: 815-827.

Castonguay, Y. and Markhart, A. H. (1991). Saturated rates of photosynthesis in water-stressed leaves of Phaseolus vulgaris and P. acutifolius. Crop Science 31: 1605-1611.

Castonguay, Y. and  Markhart, A. H. (1992). Leaf gas exchange in water stressed common bean and tepary bean.Crop Science 32: 980-986.

Celikkol Akcay, U., Ercan, O. and Kavas, Y. (2010). Drought – induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regultion 61: 21 – 28.

Chai, T., Fadzillah, N. M., Kusnsn, M. and Mahmood, M. (2005). Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets.Biologia Plantarum 49: 153-156.

Cia, M.C., Guimaráes, A.C.R., Medici, L.O., Chabregus, S.M. and Azevedo, R.A. (2012). Antioxidant responses to water deficit by drought-tolerant and sensitive sugarcane varieties. Annals of applied Biology 3: 313-324.

Creelman, R. A., Mason, H. G., Bensen, R. K., Boyer, J. S. and Mullet, J. E. (1990). Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings: Analysis of growth, sugar accumulation and gene expression. Plant Physiology 92: 205-214.

Dalmia, A. and Sawhney, V. (2004). Antioxidant defense mechanism under drought stress in wheat seedlings. Physiology and Molecular Biology of Plants 10: 109-114.

Dell’Aquila, A. and Bewley, J. D. (1989). Protein synthesis in the axes of polyethylene glycol-treated pea seed and during subsequent germination. Journal of Experimental Botany 40: 1001-1007.

Foyer, C. H., Lopez-Delgado, H., Dat, J. F. and Scott, I. M. (1997). Hydrogen peroxide and glutathione – associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum 100: 241-254.

Gilbert, G. A., Wilson, C. and Madore, M. A. (1997). Root zone salinity alters raffinose oligosaccharide metabolism and transport in Coleus. Plant Physiology 115: 1267-1276.

 Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts І. Kinetics and stoichiometry of fatty acid peroxidation. Archive Biochemistry and Biophysic 125: 189-198.

Heuer, B. (1994). Osmoregulatory role of proline in water- and salt-stressed plants. In: Handbook of plant and Crop Stress (ed. Pessarakli, M.): Marcel Dekker, Inc., New York.

Inzé, D. and van montague, M. (1995). Oxidative stress in plants. Current of Opinion Biotechecnology 6: 153-158.

Isshiki, S. and Umezaki, T. (1997). Genetic variation of isozymes in cultivated sesame (Sesamum indicum L.). Euphytica 93: 357-377.

Jain, M., Nandwal, A. S., Kundu, B. S., Kumar, B., Sheoran, I. S., Kumar, N., Mann, A. and Kukreja, S. (2006). Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture. Biologia Plantarum 50: 303-306.

Jana, S. and Choudhuri, M. A. (1981). Glycolate metabolism of three submerged aquatic angiosperms during aging. Aqautic Botany 12: 345-354.

Johnson, S. M., Doherty, S. J. and Croy, R. R. D. (2003). Biphasic superoxide generation in potato tubers. A self amplifying response to stress. Plant Physiology 13: 1440-1449.

Kavi Koshor, P. B., Hong, Z., Miao, G-H., Hu, C. and Verma, D P. S. (1995). Overexpression of Δ1-pyrroline-5-carboxlase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108: 1387-1394.

Keles, Y. and Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science 163: 783-790.

Lawlor, D. W. (2002). Limitation of photosynthesis in water- stressed leaves. Stomate vs. metabolism and the role of ATP. Annals of Botany 89:871-885.

Levent Tuna, A., Kaya C., Dikilitas, M. and Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some oxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62: 1- 9.

Li, M., Wang, G. X. and Lin, J. Sh. (2004). Calcium stimulates the adaption of cultured liquorice cells to PEG-induced water stress. Russian Journal of Plant Physiology 4: 518-524.

Liu, Z., Zhang, X., Bai, J., Suo, B. and Wang, L. (2009). Exogenus paraquat changes antioxidant enzyme activities and lipid peroxidation in drought – stressed cucumber leaves. Scientia Horticultura 121: 138 – 143.

Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., Yang, Yang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody  plant species in karst habitats of southwestern China.  Environmental and Experimental Botany 71: 174 - 183.

Michel, B.E, Kaufmann, M.R, (1973). The osmotic potential of Polyethylene glycol 6000. Plant physiology 51: 914-916.

Morita, S., Kaminaka, PH., Masumura, T. and tanaka, K. (1999). Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: The involvement of hydrogen peroxide in oxidative stress signaling. Plant and Cell Physiology.40: 417-422.

Najaphy, A., Moradpour, K., Mansourifar, C., Mostafaie, A. (2014). Terminal drought induced changes in leaf protein pattern of wheat. International of Plant, Animal and Environmental Sciences 2: 23-26.

Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase spinach chloroplasts. Plant, Cell and Environment 20: 1193-1198.

Pan, P.Y., Wu, L. J. and Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation 49: 157-165.

Reddy, A. R., Chaitanya, K. V. and Vivekanadan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202.

Rensburg, L., Krüger, G. H. J. and Krüger, H. (1993). Proline accumulation as drought-tolerant selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotina tabacum L. Journal of Plant Physiology 141: 188-194.

Roy, R., Mazumder, P.B. and Sharma, G.D. (2009). Proline, catalase and root traits as indices of drought resistance in bold grained rice (Oryza sativa) genotypes. African Journal Biotechnology 8: 6521 – 6528.

Sairam, P. K., Srivastava, G. C., Agarwal, S. and Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91.

Sgherri, C., Stevanovic, B. and Navari-Izzo, F. (2004). Role of phenolic in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiologia Plantarum 122: 478-485.

Singh, S., Gupta, A. K. and Kaur, N. (2012). Differential Responses of Antioxidative defence dystem to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Journal of Agronomy and Crop Science 3: 185 – 195.

Slama, I., Messedi, D., Ghanaya, T., Savoure, A. and Abdely, C. (2006). Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environmental and Experimental Botany 56: 231-238.

Smirnoff, N. and Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060.

Srivalli, B., Sharma, G. and Khanna-Chopra, R. (2003). Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum 119: 503-512.

Türkan, İ., Melike, B., Özdemir, F. and Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science 168: 223-231.

Velikova, V., Yordanova, I. and Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science 151: 59-66.

Vranova, E., Inzé, D. and Van Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany53: 1227-1236.

Wang, B.W., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology Biochemistry 47: 570-577.

Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinizaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology. 18: 1095-1102.

Zhang, L., Peng, J., Chen, T. T., Zhao, X. H., Zhang, S. P., Liu, S. D., Dong, H. L., Feng L., Yu. S. X. (2014). Effect of drought stress on lipid peroxidation and proline content in cotton. The Journal of Animal and Plant Sciences 6: 1729-1736.

Zlatev, Z. S., Lidon, F. C., Ramalho, J. C. and Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum 50: 389-394.