بکار‌گیری در شیشه تریپتوفان بر تجمع ایندول-3- استیک اسید (IAA) و برخی شاخص‌های فیزیولوژیکی گیاه تنباکو (Nicotina rustica L.)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم، گروه زیست‌شناسی، دانشگاه اصفهان.

2 استاد، دانشکده علوم، گروه زیست‌شناسی، دانشگاه اصفهان

3 استاد، دانشکده علوم، گروه زیست‌شناسی، دانشگاه اصفهان.

4 استادیار، دانشکده علوم، گروه زیست‌شناسی، داشگاه اصفهان.

چکیده

اکسین­ها هورمون­های گیاهی حیاتی و مهم برای رشد و نمو گیاهان بشمار می­روند. ایندول-3- استیک اسید (IAA) به عنوان اکسین طبیعی در گیاهان شناخته شده است که دارای نقش های مهم فیزیولوژیکی و اندام زائی است. اسید آمینه حلقوی تریپتوفان (Trp) به عنوان پیش ماده مسیر سنتز IAA در نظر گرفته شده است. از طرف دیگر به عنوان پیش ماده سنتز پروتئین و متابولیت­های ثانویه در گیاهان در نظر گرفته می­شود. در این مطالعه گیاهچه­های تنباکو در محیط کشت MS با سه غلظت متفاوت 0، 025/0 و 05/0 مولار از تیمار تریپتوفان قرار گرفتند. بعد از 4 هفته میزان IAA در برگ­های راسی اندازه­گیری شد. مقدار هورمون IAA بعد از تیمار گیاهچه­ها با تریپتوفان تفاوت معنی‌داری را با گیاهچه­های بدون تیمار نشان داد. نتایج نشان از وجود بیشترین مقدار IAA در گیاهان بدون تریپتوفان و کمترین مقدار در تیمار 05/0 مولار تریپتوفان مشاهده شد. همچنین در اندازه­گیری رنگیزه­­های فتوسنتزی تفاوت معنی­داری بین گیاهچه­های تحت تیمار و گیاهچه­های شاهد در میزان رنگیزه­های کلروفیل و کاروتنوئید ثبت شد. مشاهده همین روند در اندازه­گیری پارامتر­های رشد دیده شد. در گیاهان تحت تیمار تریپتوفان در مقایسه با گیاهان شاهد باند پروتئینی با حدود 40KD افزایش بیان شد.

کلیدواژه‌ها

عنوان مقاله [English]

In vitro application of tryptophan on auxin accumulation and some physiological parameters of tobacco (Nicotina rustica L.) plant

نویسندگان [English]

  • Mohammad amin Toghyani 1
  • Ali Akbar Ahsan pour 2
  • Mansour Shariati 3
  • Rahman Emamzadeh 4

1 Deparment of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

2 Deparment of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

3 Deparment of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

4 Deparment of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

چکیده [English]

Auxins are important and critical phytohormones for plant growth and development. Indole-3-acetic acid (IAA) is a natural auxin in plant tissues that plays an important role in physiology and differentiation of plants. Tryptophan (Trp) an aromatic amino acid serves as a precursor of IAA biosynthesis pathway. It is also used as a component of proteins, and various secondary metabolites synthesis in plants. In this study tobacco plantlet were cultured in MS medium supplemented with tryptophan at 0, 0/025 and 0/05 M concentrations. After 4 weeks post treatment, the IAA content was measured in apical leaves. The IAA content after Tryptophan treatments showed significant difference compared with untreated plants. Results showed that the highest level of IAA in the plants cultured on tryptophan free medium while, the lowest level of IAA was found in the plants in the culture medium with 0/05 M tryptophan. When photosynthetic pigments were measured, results of chlorophyll pigments and carotenoids showed no difference in treated capered with untreated plants.. The same pattern was observed for other physiological parameters. In plants treated with Trp compared with untreated a 40 KD protein showed up regulation.

کلیدواژه‌ها [English]

  • Indol-3-acetic acid (IAA)
  • Tryptophan
  • Tobacco plant
  • Protein
  • chlorophyll
Azooz, M. (2004). Proteins, sugars and ion leakage as a selection criterion for the salt tolerance of three sorghum cultivars at seedling stage grown under NaCl and nicotinamd. International Journal of Agricultural Biology. 6: 27-35.

 

Barlier, I., Kowalczyk, M., Marchant, A. Ljung, K., Bhalerao, R. Bennett, M. Sandberg, G. and Bellini, C. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences USA. 97(26): 14819-14824.

 

Belser W., Baron Murphy, J. Delmar, D. and Mills, S. (1971). End product control of tryptophan biosynthesis in extracts and intact cells of the higher plant"BBA. General Subjects. 237(1): 1-10.

 

Boerjan, W., Cervera, M. T. Delarue, M. Beeckman, T. Dewitte, W. Bellini, C. Caboche, M. Van Onckelen, H. Van Montagu, M. and Inzé, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. The Plant Cell. 7(9): 1405-1419.

 

Cheng, Y., Dai, X. and Zhao, Y, (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Development. 20(13): 1790-1799.

 

Guyer, D., Patton, D. and Ward, E. (1995). Evidence for cross-pathway regulation of metabolic gene expression in plants. Proceedings of the National Academy of Sciences USA. 92(11): 4997-5000.

 

Hames, B. D. (1990). One dimensional polyacrylamide gel electeroohoresis. Pp. 382. In: B. D. Hames, B and D. Rickwood (eds). Gel eleterophoresis of protein. 2ed ED, Oxford university press. New York.

 

Hull, A. K. Vij, R. and Celenza, J. L. (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences USA. 97(5): 2379-2384.

 

Ikeda, M. (2006). Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology. 69(6): 615-626.

 

Ishihara, A. Asada, Y. Takahashi, Y.  Yabe, N.  Komeda, Y. Nishioka, T. Miyagawa, H. and Wakasa, K. (2006). Metabolic changes in Arabidopsis thaliana expressing the feedback-resistant anthranilate synthase α subunit gene OASA1D Phytochemistry. 67(21): 2349-2362.

 

Mandal, S. M.  Mondal, K. C. Dey, S. and Pati, B. R. (2007). Optimization of Cultural and Nutritional Conditions for Indole 3-acetic Acid (IAA) Production by a Rhizobium sp. Isolated from Root Nodules of Vigna mungo (L.) Hepper. Research Journal in Microbiology. 2: 239-246.

 

Mashiguchi, K.  Tanaka,  K.  Sakai, T.  Sugawara, S.  Kawaide, H.  Natsume, M.  Hanada, A.  Yaeno, T.  Shirasu, K. and Yao, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences USA. 108(45): 18512-18517.

 

Matsuda, F.  Miyazawa, H. Wakasa, K. and Miyagawa, H. (2005)  Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography–electrospray ionization–tandem mass spectrometry, Bioscience Biotechnology and Biochemistry 69(4): 778-783.

 

Mikkelsen, M. D.  Hansen, C. H.  Wittstock, U. and Halkier, B. A. (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. Journal of Biology and Chemistry  275(43): 33712-33717.

 

Morino, K.  Matsuda, F. Miyazawa, H.  Sukegawa, A. Miyagawa, H. and Wakasa, K. (2005) Metabolic profiling of tryptophan-overproducing rice calli that express a feedback-insensitive α subunit of anthranilate synthase. Plant Cell Physiology 46(3): 514-521.

 

Nordström, A. Tarkowski, P. Tarkowska, D. Norbaek, R. Åstot, C.  Dolezal, K. and Sandberg, G. (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proceedings of the National Academy of Sciences USA 101(21): 8039-8044.

 

Olson, B.J.S.C. and Markwell, J. (2007) Current Protocols in Protein. Science Detection and Assay method" 48: 29-34.

 

Stepanova, A. N.  Robertson-Hoyt, J.  Yun,  J.  Benavente, L. M.  Xie, D.-Y, Doležal, K, Schlereth, A. Jürgens, G. and Alonso, J. M. (2008) TAA1-mediated Auxin Biosynthesis is essential for hormone crosstalk and Plant development. Cell 133(1): 177-191.

 

Strader, L. C. and Bartel, B. (2008) A new path to auxin. Natural Chemistry and Biology 4(6): 337-339.

 

Sugiharto, B. and Sugiyama, T. (1992) Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiology 98(4): 1403-1408.

 

Tao, Y  Ferrer, J.-L. Ljung,  K.  Pojer, F.  Hong, F.  Long, J. A.  Li, L. Moreno, J. E. Bowman, M. E. and Ivans, L. J. (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1): 164-176.

Taslima, K. Hossain, F. and Ara, U. (2011) Effect of Indole-3-Acetic Acid (IAA) on Biochemical Responses of Cowpea (Vigna unguiculata (L.) Walp) Var. Bari Fellon-1. Bangladesh Journal of Scientific and Industrial Research 46(1): 77-82.

         

Wakasa, K. Hasegawa, H. Nemoto, H., Matsuda, F. Miyazawa, H. Tozawa, Y. Morino, K. Komatsu, A. Yamada, T. and Terakawa, T. (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. Journal of Experimental Botany 57(12): 3069-3078.

 

Widholmi,  J. M. (1971) Control of tryptophan biosynthesis in plant tissue cultures: lack of repression of anthranilate and tryptophan synthetases by tryptophan. Physiologia Plantarum 25(1): 75-79.

 

Wittstock, U. and Halkier, B. A. (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Science 7(6): 263-270.

Woodward, A. W. and Bartel, B. (2005) Auxin: regulation, action and interaction. Annal of Botany. 95(5): 707-735.

 

Zhao, J.  Williams C. C. and Last, R. L. (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress and an abiotic elicitor. The Plant Cell 10(3): 359-370.

 

Zhao, Y. (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant 5(2): 334-338.

 

Zhao, Y.  Christensen, S. K.  Fankhauser, C. Cashman, J. R Cohen, J. D., Weigel, D. and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis" Science 291(5502): 306-309.

 

Zhao, Y.  Hull, A. K.  Gupta, N. R.  Goss, K. A., Alonso, J.  Ecker, J. R, Normanly, J.  Chory, J. and Celenza, J. L. (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Gene Development Journal 16(23): 3100-3112.